AI Models

Explore and compare the latest AI models from top developers. Find the perfect model for your specific needs with detailed descriptions, pricing, and capabilities.

O

OpenAI

39 models available

OpenAI: o1-pro
Reasoning
The o1 series of models are trained with reinforcement learning to think before they answer and perform complex reasoning. The o1-pro model uses more compute to think harder and provide consistently better answers.
Context size:200,000
Price:
$720
per million tokens
Start Chat
OpenAI: GPT-5.2 Pro
ToolsReasoning
GPT-5.2 Pro is OpenAI’s most advanced model, offering major improvements in agentic coding and long context performance over GPT-5 Pro. It is optimized for complex tasks that require step-by-step reasoning, instruction following, and accuracy in high-stakes use cases. It supports test-time routing features and advanced prompt understanding, including user-specified intent like "think hard about this." Improvements include reductions in hallucination, sycophancy, and better performance in coding, writing, and health-related tasks.
Context size:400,000
Price:
$201.6
per million tokens
Start Chat
OpenAI: GPT-5 Pro
ToolsReasoning
GPT-5 Pro is OpenAI’s most advanced model, offering major improvements in reasoning, code quality, and user experience. It is optimized for complex tasks that require step-by-step reasoning, instruction following, and accuracy in high-stakes use cases. It supports test-time routing features and advanced prompt understanding, including user-specified intent like "think hard about this." Improvements include reductions in hallucination, sycophancy, and better performance in coding, writing, and health-related tasks.
Context size:400,000
Price:
$144
per million tokens
Start Chat
OpenAI: o3 Pro
ToolsReasoning
The o-series of models are trained with reinforcement learning to think before they answer and perform complex reasoning. The o3-pro model uses more compute to think harder and provide consistently better answers. Note that BYOK is required for this model. Set up here: https://openrouter.ai/settings/integrations
Context size:200,000
Price:
$96
per million tokens
Start Chat
OpenAI: o3 Deep Research
ToolsReasoning
o3-deep-research is OpenAI's advanced model for deep research, designed to tackle complex, multi-step research tasks. Note: This model always uses the 'web_search' tool which adds additional cost.
Context size:200,000
Price:
$48
per million tokens
Start Chat
OpenAI: GPT-5.2-Codex
ToolsReasoning
GPT-5.2-Codex is an upgraded version of GPT-5.1-Codex optimized for software engineering and coding workflows. It is designed for both interactive development sessions and long, independent execution of complex engineering tasks. The model supports building projects from scratch, feature development, debugging, large-scale refactoring, and code review. Compared to GPT-5.1-Codex, 5.2-Codex is more steerable, adheres closely to developer instructions, and produces cleaner, higher-quality code outputs. Reasoning effort can be adjusted with the `reasoning.effort` parameter. Read the [docs here](https://openrouter.ai/docs/use-cases/reasoning-tokens#reasoning-effort-level) Codex integrates into developer environments including the CLI, IDE extensions, GitHub, and cloud tasks. It adapts reasoning effort dynamically—providing fast responses for small tasks while sustaining extended multi-hour runs for large projects. The model is trained to perform structured code reviews, catching critical flaws by reasoning over dependencies and validating behavior against tests. It also supports multimodal inputs such as images or screenshots for UI development and integrates tool use for search, dependency installation, and environment setup. Codex is intended specifically for agentic coding applications.
Context size:400,000
Price:
$16.8
per million tokens
Start Chat
OpenAI: GPT-5.2 Chat
Tools
GPT-5.2 Chat (AKA Instant) is the fast, lightweight member of the 5.2 family, optimized for low-latency chat while retaining strong general intelligence. It uses adaptive reasoning to selectively “think” on harder queries, improving accuracy on math, coding, and multi-step tasks without slowing down typical conversations. The model is warmer and more conversational by default, with better instruction following and more stable short-form reasoning. GPT-5.2 Chat is designed for high-throughput, interactive workloads where responsiveness and consistency matter more than deep deliberation.
Context size:128,000
Price:
$16.8
per million tokens
Start Chat
OpenAI: GPT-5.2
ToolsReasoning
GPT-5.2 is the latest frontier-grade model in the GPT-5 series, offering stronger agentic and long context perfomance compared to GPT-5.1. It uses adaptive reasoning to allocate computation dynamically, responding quickly to simple queries while spending more depth on complex tasks. Built for broad task coverage, GPT-5.2 delivers consistent gains across math, coding, sciende, and tool calling workloads, with more coherent long-form answers and improved tool-use reliability.
Context size:400,000
Price:
$16.8
per million tokens
Start Chat
OpenAI: GPT Audio
The gpt-audio model is OpenAI's first generally available audio model. The new snapshot features an upgraded decoder for more natural sounding voices and maintains better voice consistency. Audio is priced at $32 per million input tokens and $64 per million output tokens.
Context size:128,000
Price:
$12
per million tokens
Start Chat
OpenAI: GPT-5.1-Codex-Max
ToolsReasoning
GPT-5.1-Codex-Max is OpenAI’s latest agentic coding model, designed for long-running, high-context software development tasks. It is based on an updated version of the 5.1 reasoning stack and trained on agentic workflows spanning software engineering, mathematics, and research. GPT-5.1-Codex-Max delivers faster performance, improved reasoning, and higher token efficiency across the development lifecycle.
Context size:400,000
Price:
$12
per million tokens
Start Chat
OpenAI: GPT-5.1
ToolsReasoning
GPT-5.1 is the latest frontier-grade model in the GPT-5 series, offering stronger general-purpose reasoning, improved instruction adherence, and a more natural conversational style compared to GPT-5. It uses adaptive reasoning to allocate computation dynamically, responding quickly to simple queries while spending more depth on complex tasks. The model produces clearer, more grounded explanations with reduced jargon, making it easier to follow even on technical or multi-step problems. Built for broad task coverage, GPT-5.1 delivers consistent gains across math, coding, and structured analysis workloads, with more coherent long-form answers and improved tool-use reliability. It also features refined conversational alignment, enabling warmer, more intuitive responses without compromising precision. GPT-5.1 serves as the primary full-capability successor to GPT-5
Context size:400,000
Price:
$12
per million tokens
Start Chat
OpenAI: GPT-5.1 Chat
Tools
GPT-5.1 Chat (AKA Instant is the fast, lightweight member of the 5.1 family, optimized for low-latency chat while retaining strong general intelligence. It uses adaptive reasoning to selectively “think” on harder queries, improving accuracy on math, coding, and multi-step tasks without slowing down typical conversations. The model is warmer and more conversational by default, with better instruction following and more stable short-form reasoning. GPT-5.1 Chat is designed for high-throughput, interactive workloads where responsiveness and consistency matter more than deep deliberation.
Context size:128,000
Price:
$12
per million tokens
Start Chat
OpenAI: GPT-5.1-Codex
ToolsReasoning
GPT-5.1-Codex is a specialized version of GPT-5.1 optimized for software engineering and coding workflows. It is designed for both interactive development sessions and long, independent execution of complex engineering tasks. The model supports building projects from scratch, feature development, debugging, large-scale refactoring, and code review. Compared to GPT-5.1, Codex is more steerable, adheres closely to developer instructions, and produces cleaner, higher-quality code outputs. Reasoning effort can be adjusted with the `reasoning.effort` parameter. Read the [docs here](https://openrouter.ai/docs/use-cases/reasoning-tokens#reasoning-effort-level) Codex integrates into developer environments including the CLI, IDE extensions, GitHub, and cloud tasks. It adapts reasoning effort dynamically—providing fast responses for small tasks while sustaining extended multi-hour runs for large projects. The model is trained to perform structured code reviews, catching critical flaws by reasoning over dependencies and validating behavior against tests. It also supports multimodal inputs such as images or screenshots for UI development and integrates tool use for search, dependency installation, and environment setup. Codex is intended specifically for agentic coding applications.
Context size:400,000
Price:
$12
per million tokens
Start Chat
OpenAI: GPT-5 Image
ToolsReasoning
[GPT-5](https://openrouter.ai/openai/gpt-5) Image combines OpenAI's GPT-5 model with state-of-the-art image generation capabilities. It offers major improvements in reasoning, code quality, and user experience while incorporating GPT Image 1's superior instruction following, text rendering, and detailed image editing.
Context size:400,000
Price:
$12
per million tokens
Start Chat
OpenAI: GPT-5 Codex
ToolsReasoning
GPT-5-Codex is a specialized version of GPT-5 optimized for software engineering and coding workflows. It is designed for both interactive development sessions and long, independent execution of complex engineering tasks. The model supports building projects from scratch, feature development, debugging, large-scale refactoring, and code review. Compared to GPT-5, Codex is more steerable, adheres closely to developer instructions, and produces cleaner, higher-quality code outputs. Reasoning effort can be adjusted with the `reasoning.effort` parameter. Read the [docs here](https://openrouter.ai/docs/use-cases/reasoning-tokens#reasoning-effort-level) Codex integrates into developer environments including the CLI, IDE extensions, GitHub, and cloud tasks. It adapts reasoning effort dynamically—providing fast responses for small tasks while sustaining extended multi-hour runs for large projects. The model is trained to perform structured code reviews, catching critical flaws by reasoning over dependencies and validating behavior against tests. It also supports multimodal inputs such as images or screenshots for UI development and integrates tool use for search, dependency installation, and environment setup. Codex is intended specifically for agentic coding applications.
Context size:400,000
Price:
$12
per million tokens
Start Chat
OpenAI: GPT-4o Audio
Tools
The gpt-4o-audio-preview model adds support for audio inputs as prompts. This enhancement allows the model to detect nuances within audio recordings and add depth to generated user experiences. Audio outputs are currently not supported. Audio tokens are priced at $40 per million input and $80 per million output audio tokens.
Context size:128,000
Price:
$12
per million tokens
Start Chat
OpenAI: GPT-5 Chat
GPT-5 Chat is designed for advanced, natural, multimodal, and context-aware conversations for enterprise applications.
Context size:128,000
Price:
$12
per million tokens
Start Chat
OpenAI: GPT-5
ToolsReasoning
GPT-5 is OpenAI’s most advanced model, offering major improvements in reasoning, code quality, and user experience. It is optimized for complex tasks that require step-by-step reasoning, instruction following, and accuracy in high-stakes use cases. It supports test-time routing features and advanced prompt understanding, including user-specified intent like "think hard about this." Improvements include reductions in hallucination, sycophancy, and better performance in coding, writing, and health-related tasks.
Context size:400,000
Price:
$12
per million tokens
Start Chat
OpenAI: GPT-4o Search Preview
GPT-4o Search Previewis a specialized model for web search in Chat Completions. It is trained to understand and execute web search queries.
Context size:128,000
Price:
$12
per million tokens
Start Chat
OpenAI: o4 Mini Deep Research
ToolsReasoning
o4-mini-deep-research is OpenAI's faster, more affordable deep research model—ideal for tackling complex, multi-step research tasks. Note: This model always uses the 'web_search' tool which adds additional cost.
Context size:200,000
Price:
$9.6
per million tokens
Start Chat
OpenAI: o3
ToolsReasoning
o3 is a well-rounded and powerful model across domains. It sets a new standard for math, science, coding, and visual reasoning tasks. It also excels at technical writing and instruction-following. Use it to think through multi-step problems that involve analysis across text, code, and images.
Context size:200,000
Price:
$9.6
per million tokens
Start Chat
OpenAI: GPT-4.1
Tools
GPT-4.1 is a flagship large language model optimized for advanced instruction following, real-world software engineering, and long-context reasoning. It supports a 1 million token context window and outperforms GPT-4o and GPT-4.5 across coding (54.6% SWE-bench Verified), instruction compliance (87.4% IFEval), and multimodal understanding benchmarks. It is tuned for precise code diffs, agent reliability, and high recall in large document contexts, making it ideal for agents, IDE tooling, and enterprise knowledge retrieval.
Context size:1,047,576
Price:
$9.6
per million tokens
Start Chat
OpenAI: o4 Mini High
ToolsReasoning
OpenAI o4-mini-high is the same model as [o4-mini](/openai/o4-mini) with reasoning_effort set to high. OpenAI o4-mini is a compact reasoning model in the o-series, optimized for fast, cost-efficient performance while retaining strong multimodal and agentic capabilities. It supports tool use and demonstrates competitive reasoning and coding performance across benchmarks like AIME (99.5% with Python) and SWE-bench, outperforming its predecessor o3-mini and even approaching o3 in some domains. Despite its smaller size, o4-mini exhibits high accuracy in STEM tasks, visual problem solving (e.g., MathVista, MMMU), and code editing. It is especially well-suited for high-throughput scenarios where latency or cost is critical. Thanks to its efficient architecture and refined reinforcement learning training, o4-mini can chain tools, generate structured outputs, and solve multi-step tasks with minimal delay—often in under a minute.
Context size:200,000
Price:
$5.28
per million tokens
Start Chat
OpenAI: o4 Mini
ToolsReasoning
OpenAI o4-mini is a compact reasoning model in the o-series, optimized for fast, cost-efficient performance while retaining strong multimodal and agentic capabilities. It supports tool use and demonstrates competitive reasoning and coding performance across benchmarks like AIME (99.5% with Python) and SWE-bench, outperforming its predecessor o3-mini and even approaching o3 in some domains. Despite its smaller size, o4-mini exhibits high accuracy in STEM tasks, visual problem solving (e.g., MathVista, MMMU), and code editing. It is especially well-suited for high-throughput scenarios where latency or cost is critical. Thanks to its efficient architecture and refined reinforcement learning training, o4-mini can chain tools, generate structured outputs, and solve multi-step tasks with minimal delay—often in under a minute.
Context size:200,000
Price:
$5.28
per million tokens
Start Chat
OpenAI: o3 Mini High
Tools
OpenAI o3-mini-high is the same model as [o3-mini](/openai/o3-mini) with reasoning_effort set to high. o3-mini is a cost-efficient language model optimized for STEM reasoning tasks, particularly excelling in science, mathematics, and coding. The model features three adjustable reasoning effort levels and supports key developer capabilities including function calling, structured outputs, and streaming, though it does not include vision processing capabilities. The model demonstrates significant improvements over its predecessor, with expert testers preferring its responses 56% of the time and noting a 39% reduction in major errors on complex questions. With medium reasoning effort settings, o3-mini matches the performance of the larger o1 model on challenging reasoning evaluations like AIME and GPQA, while maintaining lower latency and cost.
Context size:200,000
Price:
$5.28
per million tokens
Start Chat
OpenAI: GPT Audio Mini
A cost-efficient version of GPT Audio. The new snapshot features an upgraded decoder for more natural sounding voices and maintains better voice consistency. Input is priced at $0.60 per million tokens and output is priced at $2.40 per million tokens.
Context size:128,000
Price:
$2.88
per million tokens
Start Chat
OpenAI: GPT-5.1-Codex-Mini
ToolsReasoning
GPT-5.1-Codex-Mini is a smaller and faster version of GPT-5.1-Codex
Context size:400,000
Price:
$2.4
per million tokens
Start Chat
OpenAI: GPT-5 Image Mini
ToolsReasoning
GPT-5 Image Mini combines OpenAI's advanced language capabilities, powered by [GPT-5 Mini](https://openrouter.ai/openai/gpt-5-mini), with GPT Image 1 Mini for efficient image generation. This natively multimodal model features superior instruction following, text rendering, and detailed image editing with reduced latency and cost. It excels at high-quality visual creation while maintaining strong text understanding, making it ideal for applications that require both efficient image generation and text processing at scale.
Context size:400,000
Price:
$2.4
per million tokens
Start Chat
OpenAI: GPT-5 Mini
ToolsReasoning
GPT-5 Mini is a compact version of GPT-5, designed to handle lighter-weight reasoning tasks. It provides the same instruction-following and safety-tuning benefits as GPT-5, but with reduced latency and cost. GPT-5 Mini is the successor to OpenAI's o4-mini model.
Context size:400,000
Price:
$2.4
per million tokens
Start Chat
OpenAI: GPT-4.1 Mini
Tools
GPT-4.1 Mini is a mid-sized model delivering performance competitive with GPT-4o at substantially lower latency and cost. It retains a 1 million token context window and scores 45.1% on hard instruction evals, 35.8% on MultiChallenge, and 84.1% on IFEval. Mini also shows strong coding ability (e.g., 31.6% on Aider’s polyglot diff benchmark) and vision understanding, making it suitable for interactive applications with tight performance constraints.
Context size:1,047,576
Price:
$1.92
per million tokens
Start Chat
OpenAI: GPT-4o-mini Search Preview
GPT-4o mini Search Preview is a specialized model for web search in Chat Completions. It is trained to understand and execute web search queries.
Context size:128,000
Price:
$0.72
per million tokens
Start Chat
OpenAI: GPT-5 Nano
ToolsReasoning
GPT-5-Nano is the smallest and fastest variant in the GPT-5 system, optimized for developer tools, rapid interactions, and ultra-low latency environments. While limited in reasoning depth compared to its larger counterparts, it retains key instruction-following and safety features. It is the successor to GPT-4.1-nano and offers a lightweight option for cost-sensitive or real-time applications.
Context size:400,000
Price:
$0.48
per million tokens
Start Chat
OpenAI: GPT-4.1 Nano
Tools
For tasks that demand low latency, GPT‑4.1 nano is the fastest and cheapest model in the GPT-4.1 series. It delivers exceptional performance at a small size with its 1 million token context window, and scores 80.1% on MMLU, 50.3% on GPQA, and 9.8% on Aider polyglot coding – even higher than GPT‑4o mini. It’s ideal for tasks like classification or autocompletion.
Context size:1,047,576
Price:
$0.48
per million tokens
Start Chat
OpenAI: gpt-oss-safeguard-20b
ToolsReasoning
gpt-oss-safeguard-20b is a safety reasoning model from OpenAI built upon gpt-oss-20b. This open-weight, 21B-parameter Mixture-of-Experts (MoE) model offers lower latency for safety tasks like content classification, LLM filtering, and trust & safety labeling. Learn more about this model in OpenAI's gpt-oss-safeguard [user guide](https://cookbook.openai.com/articles/gpt-oss-safeguard-guide).
Context size:131,072
Price:
$0.36
per million tokens
Start Chat
OpenAI: gpt-oss-120b
ToolsReasoning
gpt-oss-120b is an open-weight, 117B-parameter Mixture-of-Experts (MoE) language model from OpenAI designed for high-reasoning, agentic, and general-purpose production use cases. It activates 5.1B parameters per forward pass and is optimized to run on a single H100 GPU with native MXFP4 quantization. The model supports configurable reasoning depth, full chain-of-thought access, and native tool use, including function calling, browsing, and structured output generation.
Context size:131,072
Price:
$0.23
per million tokens
Start Chat
OpenAI: gpt-oss-120b (exacto)
ToolsReasoning
gpt-oss-120b is an open-weight, 117B-parameter Mixture-of-Experts (MoE) language model from OpenAI designed for high-reasoning, agentic, and general-purpose production use cases. It activates 5.1B parameters per forward pass and is optimized to run on a single H100 GPU with native MXFP4 quantization. The model supports configurable reasoning depth, full chain-of-thought access, and native tool use, including function calling, browsing, and structured output generation.
Context size:131,072
Price:
$0.23
per million tokens
Start Chat
OpenAI: gpt-oss-20b
ToolsReasoning
gpt-oss-20b is an open-weight 21B parameter model released by OpenAI under the Apache 2.0 license. It uses a Mixture-of-Experts (MoE) architecture with 3.6B active parameters per forward pass, optimized for lower-latency inference and deployability on consumer or single-GPU hardware. The model is trained in OpenAI’s Harmony response format and supports reasoning level configuration, fine-tuning, and agentic capabilities including function calling, tool use, and structured outputs.
Context size:131,072
Price:
$0.12
per million tokens
Start Chat
OpenAI: gpt-oss-120b (free)
ToolsReasoning
gpt-oss-120b is an open-weight, 117B-parameter Mixture-of-Experts (MoE) language model from OpenAI designed for high-reasoning, agentic, and general-purpose production use cases. It activates 5.1B parameters per forward pass and is optimized to run on a single H100 GPU with native MXFP4 quantization. The model supports configurable reasoning depth, full chain-of-thought access, and native tool use, including function calling, browsing, and structured output generation.
Context size:131,072
Price:
Free
Start Chat
OpenAI: gpt-oss-20b (free)
ToolsReasoning
gpt-oss-20b is an open-weight 21B parameter model released by OpenAI under the Apache 2.0 license. It uses a Mixture-of-Experts (MoE) architecture with 3.6B active parameters per forward pass, optimized for lower-latency inference and deployability on consumer or single-GPU hardware. The model is trained in OpenAI’s Harmony response format and supports reasoning level configuration, fine-tuning, and agentic capabilities including function calling, tool use, and structured outputs.
Context size:131,072
Price:
Free
Start Chat
A

Anthropic

8 models available

Anthropic: Claude Opus 4.1
ToolsReasoning
Claude Opus 4.1 is an updated version of Anthropic’s flagship model, offering improved performance in coding, reasoning, and agentic tasks. It achieves 74.5% on SWE-bench Verified and shows notable gains in multi-file code refactoring, debugging precision, and detail-oriented reasoning. The model supports extended thinking up to 64K tokens and is optimized for tasks involving research, data analysis, and tool-assisted reasoning.
Context size:200,000
Price:
$90
per million tokens
Start Chat
Anthropic: Claude Opus 4
ToolsReasoning
Claude Opus 4 is benchmarked as the world’s best coding model, at time of release, bringing sustained performance on complex, long-running tasks and agent workflows. It sets new benchmarks in software engineering, achieving leading results on SWE-bench (72.5%) and Terminal-bench (43.2%). Opus 4 supports extended, agentic workflows, handling thousands of task steps continuously for hours without degradation. Read more at the [blog post here](https://www.anthropic.com/news/claude-4)
Context size:200,000
Price:
$90
per million tokens
Start Chat
Anthropic: Claude Opus 4.5
ToolsReasoning
Claude Opus 4.5 is Anthropic’s frontier reasoning model optimized for complex software engineering, agentic workflows, and long-horizon computer use. It offers strong multimodal capabilities, competitive performance across real-world coding and reasoning benchmarks, and improved robustness to prompt injection. The model is designed to operate efficiently across varied effort levels, enabling developers to trade off speed, depth, and token usage depending on task requirements. It comes with a new parameter to control token efficiency, which can be accessed using the OpenRouter Verbosity parameter with low, medium, or high. Opus 4.5 supports advanced tool use, extended context management, and coordinated multi-agent setups, making it well-suited for autonomous research, debugging, multi-step planning, and spreadsheet/browser manipulation. It delivers substantial gains in structured reasoning, execution reliability, and alignment compared to prior Opus generations, while reducing token overhead and improving performance on long-running tasks.
Context size:200,000
Price:
$30
per million tokens
Start Chat
Anthropic: Claude Sonnet 4.5
ToolsReasoning
Claude Sonnet 4.5 is Anthropic’s most advanced Sonnet model to date, optimized for real-world agents and coding workflows. It delivers state-of-the-art performance on coding benchmarks such as SWE-bench Verified, with improvements across system design, code security, and specification adherence. The model is designed for extended autonomous operation, maintaining task continuity across sessions and providing fact-based progress tracking. Sonnet 4.5 also introduces stronger agentic capabilities, including improved tool orchestration, speculative parallel execution, and more efficient context and memory management. With enhanced context tracking and awareness of token usage across tool calls, it is particularly well-suited for multi-context and long-running workflows. Use cases span software engineering, cybersecurity, financial analysis, research agents, and other domains requiring sustained reasoning and tool use.
Context size:1,000,000
Price:
$18
per million tokens
Start Chat
Anthropic: Claude Sonnet 4
ToolsReasoning
Claude Sonnet 4 significantly enhances the capabilities of its predecessor, Sonnet 3.7, excelling in both coding and reasoning tasks with improved precision and controllability. Achieving state-of-the-art performance on SWE-bench (72.7%), Sonnet 4 balances capability and computational efficiency, making it suitable for a broad range of applications from routine coding tasks to complex software development projects. Key enhancements include improved autonomous codebase navigation, reduced error rates in agent-driven workflows, and increased reliability in following intricate instructions. Sonnet 4 is optimized for practical everyday use, providing advanced reasoning capabilities while maintaining efficiency and responsiveness in diverse internal and external scenarios. Read more at the [blog post here](https://www.anthropic.com/news/claude-4)
Context size:1,000,000
Price:
$18
per million tokens
Start Chat
Anthropic: Claude 3.7 Sonnet (thinking)
ToolsReasoning
Claude 3.7 Sonnet is an advanced large language model with improved reasoning, coding, and problem-solving capabilities. It introduces a hybrid reasoning approach, allowing users to choose between rapid responses and extended, step-by-step processing for complex tasks. The model demonstrates notable improvements in coding, particularly in front-end development and full-stack updates, and excels in agentic workflows, where it can autonomously navigate multi-step processes. Claude 3.7 Sonnet maintains performance parity with its predecessor in standard mode while offering an extended reasoning mode for enhanced accuracy in math, coding, and instruction-following tasks. Read more at the [blog post here](https://www.anthropic.com/news/claude-3-7-sonnet)
Context size:200,000
Price:
$18
per million tokens
Start Chat
Anthropic: Claude 3.7 Sonnet
ToolsReasoning
Claude 3.7 Sonnet is an advanced large language model with improved reasoning, coding, and problem-solving capabilities. It introduces a hybrid reasoning approach, allowing users to choose between rapid responses and extended, step-by-step processing for complex tasks. The model demonstrates notable improvements in coding, particularly in front-end development and full-stack updates, and excels in agentic workflows, where it can autonomously navigate multi-step processes. Claude 3.7 Sonnet maintains performance parity with its predecessor in standard mode while offering an extended reasoning mode for enhanced accuracy in math, coding, and instruction-following tasks. Read more at the [blog post here](https://www.anthropic.com/news/claude-3-7-sonnet)
Context size:200,000
Price:
$18
per million tokens
Start Chat
Anthropic: Claude Haiku 4.5
ToolsReasoning
Claude Haiku 4.5 is Anthropic’s fastest and most efficient model, delivering near-frontier intelligence at a fraction of the cost and latency of larger Claude models. Matching Claude Sonnet 4’s performance across reasoning, coding, and computer-use tasks, Haiku 4.5 brings frontier-level capability to real-time and high-volume applications. It introduces extended thinking to the Haiku line; enabling controllable reasoning depth, summarized or interleaved thought output, and tool-assisted workflows with full support for coding, bash, web search, and computer-use tools. Scoring >73% on SWE-bench Verified, Haiku 4.5 ranks among the world’s best coding models while maintaining exceptional responsiveness for sub-agents, parallelized execution, and scaled deployment.
Context size:200,000
Price:
$6
per million tokens
Start Chat
X

X.ai

8 models available

xAI: Grok 4
ToolsReasoning
Grok 4 is xAI's latest reasoning model with a 256k context window. It supports parallel tool calling, structured outputs, and both image and text inputs. Note that reasoning is not exposed, reasoning cannot be disabled, and the reasoning effort cannot be specified. Pricing increases once the total tokens in a given request is greater than 128k tokens. See more details on the [xAI docs](https://docs.x.ai/docs/models/grok-4-0709)
Context size:256,000
Price:
$18
per million tokens
Start Chat
xAI: Grok 3
Tools
Grok 3 is the latest model from xAI. It's their flagship model that excels at enterprise use cases like data extraction, coding, and text summarization. Possesses deep domain knowledge in finance, healthcare, law, and science.
Context size:131,072
Price:
$18
per million tokens
Start Chat
xAI: Grok 3 Beta
Tools
Grok 3 is the latest model from xAI. It's their flagship model that excels at enterprise use cases like data extraction, coding, and text summarization. Possesses deep domain knowledge in finance, healthcare, law, and science. Excels in structured tasks and benchmarks like GPQA, LCB, and MMLU-Pro where it outperforms Grok 3 Mini even on high thinking. Note: That there are two xAI endpoints for this model. By default when using this model we will always route you to the base endpoint. If you want the fast endpoint you can add `provider: { sort: throughput}`, to sort by throughput instead.
Context size:131,072
Price:
$18
per million tokens
Start Chat
xAI: Grok Code Fast 1
ToolsReasoning
Grok Code Fast 1 is a speedy and economical reasoning model that excels at agentic coding. With reasoning traces visible in the response, developers can steer Grok Code for high-quality work flows.
Context size:256,000
Price:
$1.8
per million tokens
Start Chat
xAI: Grok 4.1 Fast
ToolsReasoning
Grok 4.1 Fast is xAI's best agentic tool calling model that shines in real-world use cases like customer support and deep research. 2M context window. Reasoning can be enabled/disabled using the `reasoning` `enabled` parameter in the API. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#controlling-reasoning-tokens)
Context size:2,000,000
Price:
$0.6
per million tokens
Start Chat
xAI: Grok 4 Fast
ToolsReasoning
Grok 4 Fast is xAI's latest multimodal model with SOTA cost-efficiency and a 2M token context window. It comes in two flavors: non-reasoning and reasoning. Read more about the model on xAI's [news post](http://x.ai/news/grok-4-fast). Reasoning can be enabled/disabled using the `reasoning` `enabled` parameter in the API. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#controlling-reasoning-tokens)
Context size:2,000,000
Price:
$0.6
per million tokens
Start Chat
xAI: Grok 3 Mini
ToolsReasoning
A lightweight model that thinks before responding. Fast, smart, and great for logic-based tasks that do not require deep domain knowledge. The raw thinking traces are accessible.
Context size:131,072
Price:
$0.6
per million tokens
Start Chat
xAI: Grok 3 Mini Beta
ToolsReasoning
Grok 3 Mini is a lightweight, smaller thinking model. Unlike traditional models that generate answers immediately, Grok 3 Mini thinks before responding. It’s ideal for reasoning-heavy tasks that don’t demand extensive domain knowledge, and shines in math-specific and quantitative use cases, such as solving challenging puzzles or math problems. Transparent "thinking" traces accessible. Defaults to low reasoning, can boost with setting `reasoning: { effort: "high" }` Note: That there are two xAI endpoints for this model. By default when using this model we will always route you to the base endpoint. If you want the fast endpoint you can add `provider: { sort: throughput}`, to sort by throughput instead.
Context size:131,072
Price:
$0.6
per million tokens
Start Chat
G

Google

17 models available

Google: Nano Banana Pro (Gemini 3 Pro Image Preview)
Reasoning
Nano Banana Pro is Google’s most advanced image-generation and editing model, built on Gemini 3 Pro. It extends the original Nano Banana with significantly improved multimodal reasoning, real-world grounding, and high-fidelity visual synthesis. The model generates context-rich graphics, from infographics and diagrams to cinematic composites, and can incorporate real-time information via Search grounding. It offers industry-leading text rendering in images (including long passages and multilingual layouts), consistent multi-image blending, and accurate identity preservation across up to five subjects. Nano Banana Pro adds fine-grained creative controls such as localized edits, lighting and focus adjustments, camera transformations, and support for 2K/4K outputs and flexible aspect ratios. It is designed for professional-grade design, product visualization, storyboarding, and complex multi-element compositions while remaining efficient for general image creation workflows.
Context size:65,536
Price:
$14.4
per million tokens
Start Chat
Google: Gemini 3 Pro Preview
ToolsReasoning
Gemini 3 Pro is Google’s flagship frontier model for high-precision multimodal reasoning, combining strong performance across text, image, video, audio, and code with a 1M-token context window. Reasoning Details must be preserved when using multi-turn tool calling, see our docs here: https://openrouter.ai/docs/use-cases/reasoning-tokens#preserving-reasoning-blocks. It delivers state-of-the-art benchmark results in general reasoning, STEM problem solving, factual QA, and multimodal understanding, including leading scores on LMArena, GPQA Diamond, MathArena Apex, MMMU-Pro, and Video-MMMU. Interactions emphasize depth and interpretability: the model is designed to infer intent with minimal prompting and produce direct, insight-focused responses. Built for advanced development and agentic workflows, Gemini 3 Pro provides robust tool-calling, long-horizon planning stability, and strong zero-shot generation for complex UI, visualization, and coding tasks. It excels at agentic coding (SWE-Bench Verified, Terminal-Bench 2.0), multimodal analysis, and structured long-form tasks such as research synthesis, planning, and interactive learning experiences. Suitable applications include autonomous agents, coding assistants, multimodal analytics, scientific reasoning, and high-context information processing.
Context size:1,048,576
Price:
$14.4
per million tokens
Start Chat
Google: Gemini 2.5 Pro
ToolsReasoning
Gemini 2.5 Pro is Google’s state-of-the-art AI model designed for advanced reasoning, coding, mathematics, and scientific tasks. It employs “thinking” capabilities, enabling it to reason through responses with enhanced accuracy and nuanced context handling. Gemini 2.5 Pro achieves top-tier performance on multiple benchmarks, including first-place positioning on the LMArena leaderboard, reflecting superior human-preference alignment and complex problem-solving abilities.
Context size:1,048,576
Price:
$12
per million tokens
Start Chat
Google: Gemini 3 Flash Preview
ToolsReasoning
Gemini 3 Flash Preview is a high speed, high value thinking model designed for agentic workflows, multi turn chat, and coding assistance. It delivers near Pro level reasoning and tool use performance with substantially lower latency than larger Gemini variants, making it well suited for interactive development, long running agent loops, and collaborative coding tasks. Compared to Gemini 2.5 Flash, it provides broad quality improvements across reasoning, multimodal understanding, and reliability. The model supports a 1M token context window and multimodal inputs including text, images, audio, video, and PDFs, with text output. It includes configurable reasoning via thinking levels (minimal, low, medium, high), structured output, tool use, and automatic context caching. Gemini 3 Flash Preview is optimized for users who want strong reasoning and agentic behavior without the cost or latency of full scale frontier models.
Context size:1,048,576
Price:
$3.6
per million tokens
Start Chat
Google: Gemini 2.5 Flash Image (Nano Banana)
Gemini 2.5 Flash Image, a.k.a. "Nano Banana," is now generally available. It is a state of the art image generation model with contextual understanding. It is capable of image generation, edits, and multi-turn conversations. Aspect ratios can be controlled with the [image_config API Parameter](https://openrouter.ai/docs/features/multimodal/image-generation#image-aspect-ratio-configuration)
Context size:32,768
Price:
$3
per million tokens
Start Chat
Google: Gemini 2.5 Flash Preview 09-2025
ToolsReasoning
Gemini 2.5 Flash Preview September 2025 Checkpoint is Google's state-of-the-art workhorse model, specifically designed for advanced reasoning, coding, mathematics, and scientific tasks. It includes built-in "thinking" capabilities, enabling it to provide responses with greater accuracy and nuanced context handling. Additionally, Gemini 2.5 Flash is configurable through the "max tokens for reasoning" parameter, as described in the documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning).
Context size:1,048,576
Price:
$3
per million tokens
Start Chat
Google: Gemini 2.5 Flash Lite Preview 09-2025
ToolsReasoning
Gemini 2.5 Flash-Lite is a lightweight reasoning model in the Gemini 2.5 family, optimized for ultra-low latency and cost efficiency. It offers improved throughput, faster token generation, and better performance across common benchmarks compared to earlier Flash models. By default, "thinking" (i.e. multi-pass reasoning) is disabled to prioritize speed, but developers can enable it via the [Reasoning API parameter](https://openrouter.ai/docs/use-cases/reasoning-tokens) to selectively trade off cost for intelligence.
Context size:1,048,576
Price:
$0.48
per million tokens
Start Chat
Google: Gemini 2.0 Flash Lite
Tools
Gemini 2.0 Flash Lite offers a significantly faster time to first token (TTFT) compared to [Gemini Flash 1.5](/google/gemini-flash-1.5), while maintaining quality on par with larger models like [Gemini Pro 1.5](/google/gemini-pro-1.5), all at extremely economical token prices.
Context size:1,048,576
Price:
$0.36
per million tokens
Start Chat
Google: Gemma 3 27B
Tools
Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling. Gemma 3 27B is Google's latest open source model, successor to [Gemma 2](google/gemma-2-27b-it)
Context size:96,000
Price:
$0.18
per million tokens
Start Chat
Google: Gemma 3 12B
Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling. Gemma 3 12B is the second largest in the family of Gemma 3 models after [Gemma 3 27B](google/gemma-3-27b-it)
Context size:131,072
Price:
$0.12
per million tokens
Start Chat
Google: Gemma 3 4B
Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling.
Context size:96,000
Price:
$0.09
per million tokens
Start Chat
Google: Gemma 3n 4B
Gemma 3n E4B-it is optimized for efficient execution on mobile and low-resource devices, such as phones, laptops, and tablets. It supports multimodal inputs—including text, visual data, and audio—enabling diverse tasks such as text generation, speech recognition, translation, and image analysis. Leveraging innovations like Per-Layer Embedding (PLE) caching and the MatFormer architecture, Gemma 3n dynamically manages memory usage and computational load by selectively activating model parameters, significantly reducing runtime resource requirements. This model supports a wide linguistic range (trained in over 140 languages) and features a flexible 32K token context window. Gemma 3n can selectively load parameters, optimizing memory and computational efficiency based on the task or device capabilities, making it well-suited for privacy-focused, offline-capable applications and on-device AI solutions. [Read more in the blog post](https://developers.googleblog.com/en/introducing-gemma-3n/)
Context size:32,768
Price:
$0.05
per million tokens
Start Chat
Google: Gemma 3n 2B (free)
Gemma 3n E2B IT is a multimodal, instruction-tuned model developed by Google DeepMind, designed to operate efficiently at an effective parameter size of 2B while leveraging a 6B architecture. Based on the MatFormer architecture, it supports nested submodels and modular composition via the Mix-and-Match framework. Gemma 3n models are optimized for low-resource deployment, offering 32K context length and strong multilingual and reasoning performance across common benchmarks. This variant is trained on a diverse corpus including code, math, web, and multimodal data.
Context size:8,192
Price:
Free
Start Chat
Google: Gemma 3n 4B (free)
Gemma 3n E4B-it is optimized for efficient execution on mobile and low-resource devices, such as phones, laptops, and tablets. It supports multimodal inputs—including text, visual data, and audio—enabling diverse tasks such as text generation, speech recognition, translation, and image analysis. Leveraging innovations like Per-Layer Embedding (PLE) caching and the MatFormer architecture, Gemma 3n dynamically manages memory usage and computational load by selectively activating model parameters, significantly reducing runtime resource requirements. This model supports a wide linguistic range (trained in over 140 languages) and features a flexible 32K token context window. Gemma 3n can selectively load parameters, optimizing memory and computational efficiency based on the task or device capabilities, making it well-suited for privacy-focused, offline-capable applications and on-device AI solutions. [Read more in the blog post](https://developers.googleblog.com/en/introducing-gemma-3n/)
Context size:8,192
Price:
Free
Start Chat
Google: Gemma 3 4B (free)
Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling.
Context size:32,768
Price:
Free
Start Chat
Google: Gemma 3 12B (free)
Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling. Gemma 3 12B is the second largest in the family of Gemma 3 models after [Gemma 3 27B](google/gemma-3-27b-it)
Context size:32,768
Price:
Free
Start Chat
Google: Gemma 3 27B (free)
Tools
Gemma 3 introduces multimodality, supporting vision-language input and text outputs. It handles context windows up to 128k tokens, understands over 140 languages, and offers improved math, reasoning, and chat capabilities, including structured outputs and function calling. Gemma 3 27B is Google's latest open source model, successor to [Gemma 2](google/gemma-2-27b-it)
Context size:131,072
Price:
Free
Start Chat
Q

Qwen

32 models available

Qwen: Qwen3 Max
Tools
Qwen3-Max is an updated release built on the Qwen3 series, offering major improvements in reasoning, instruction following, multilingual support, and long-tail knowledge coverage compared to the January 2025 version. It delivers higher accuracy in math, coding, logic, and science tasks, follows complex instructions in Chinese and English more reliably, reduces hallucinations, and produces higher-quality responses for open-ended Q&A, writing, and conversation. The model supports over 100 languages with stronger translation and commonsense reasoning, and is optimized for retrieval-augmented generation (RAG) and tool calling, though it does not include a dedicated “thinking” mode.
Context size:256,000
Price:
$7.2
per million tokens
Start Chat
Qwen: Qwen3 Coder Plus
Tools
Qwen3 Coder Plus is Alibaba's proprietary version of the Open Source Qwen3 Coder 480B A35B. It is a powerful coding agent model specializing in autonomous programming via tool calling and environment interaction, combining coding proficiency with versatile general-purpose abilities.
Context size:128,000
Price:
$6
per million tokens
Start Chat
Qwen: Qwen Plus 0728 (thinking)
ToolsReasoning
Qwen Plus 0728, based on the Qwen3 foundation model, is a 1 million context hybrid reasoning model with a balanced performance, speed, and cost combination.
Context size:1,000,000
Price:
$4.8
per million tokens
Start Chat
Qwen: Qwen3 VL 235B A22B Thinking
ToolsReasoning
Qwen3-VL-235B-A22B Thinking is a multimodal model that unifies strong text generation with visual understanding across images and video. The Thinking model is optimized for multimodal reasoning in STEM and math. The series emphasizes robust perception (recognition of diverse real-world and synthetic categories), spatial understanding (2D/3D grounding), and long-form visual comprehension, with competitive results on public multimodal benchmarks for both perception and reasoning. Beyond analysis, Qwen3-VL supports agentic interaction and tool use: it can follow complex instructions over multi-image, multi-turn dialogues; align text to video timelines for precise temporal queries; and operate GUI elements for automation tasks. The models also enable visual coding workflows, turning sketches or mockups into code and assisting with UI debugging, while maintaining strong text-only performance comparable to the flagship Qwen3 language models. This makes Qwen3-VL suitable for production scenarios spanning document AI, multilingual OCR, software/UI assistance, spatial/embodied tasks, and research on vision-language agents.
Context size:262,144
Price:
$4.2
per million tokens
Start Chat
Qwen: Qwen3 VL 8B Thinking
ToolsReasoning
Qwen3-VL-8B-Thinking is the reasoning-optimized variant of the Qwen3-VL-8B multimodal model, designed for advanced visual and textual reasoning across complex scenes, documents, and temporal sequences. It integrates enhanced multimodal alignment and long-context processing (native 256K, expandable to 1M tokens) for tasks such as scientific visual analysis, causal inference, and mathematical reasoning over image or video inputs. Compared to the Instruct edition, the Thinking version introduces deeper visual-language fusion and deliberate reasoning pathways that improve performance on long-chain logic tasks, STEM problem-solving, and multi-step video understanding. It achieves stronger temporal grounding via Interleaved-MRoPE and timestamp-aware embeddings, while maintaining robust OCR, multilingual comprehension, and text generation on par with large text-only LLMs.
Context size:256,000
Price:
$2.52
per million tokens
Start Chat
Qwen: Qwen3 Coder 480B A35B (exacto)
ToolsReasoning
Qwen3-Coder-480B-A35B-Instruct is a Mixture-of-Experts (MoE) code generation model developed by the Qwen team. It is optimized for agentic coding tasks such as function calling, tool use, and long-context reasoning over repositories. The model features 480 billion total parameters, with 35 billion active per forward pass (8 out of 160 experts). Pricing for the Alibaba endpoints varies by context length. Once a request is greater than 128k input tokens, the higher pricing is used.
Context size:262,144
Price:
$2.16
per million tokens
Start Chat
Qwen: Qwen3 VL 32B Instruct
Qwen3-VL-32B-Instruct is a large-scale multimodal vision-language model designed for high-precision understanding and reasoning across text, images, and video. With 32 billion parameters, it combines deep visual perception with advanced text comprehension, enabling fine-grained spatial reasoning, document and scene analysis, and long-horizon video understanding.Robust OCR in 32 languages, and enhanced multimodal fusion through Interleaved-MRoPE and DeepStack architectures. Optimized for agentic interaction and visual tool use, Qwen3-VL-32B delivers state-of-the-art performance for complex real-world multimodal tasks.
Context size:262,144
Price:
$1.8
per million tokens
Start Chat
Qwen: Qwen3 Coder Flash
Tools
Qwen3 Coder Flash is Alibaba's fast and cost efficient version of their proprietary Qwen3 Coder Plus. It is a powerful coding agent model specializing in autonomous programming via tool calling and environment interaction, combining coding proficiency with versatile general-purpose abilities.
Context size:128,000
Price:
$1.8
per million tokens
Start Chat
Qwen: Qwen3 VL 235B A22B Instruct
Tools
Qwen3-VL-235B-A22B Instruct is an open-weight multimodal model that unifies strong text generation with visual understanding across images and video. The Instruct model targets general vision-language use (VQA, document parsing, chart/table extraction, multilingual OCR). The series emphasizes robust perception (recognition of diverse real-world and synthetic categories), spatial understanding (2D/3D grounding), and long-form visual comprehension, with competitive results on public multimodal benchmarks for both perception and reasoning. Beyond analysis, Qwen3-VL supports agentic interaction and tool use: it can follow complex instructions over multi-image, multi-turn dialogues; align text to video timelines for precise temporal queries; and operate GUI elements for automation tasks. The models also enable visual coding workflows—turning sketches or mockups into code and assisting with UI debugging—while maintaining strong text-only performance comparable to the flagship Qwen3 language models. This makes Qwen3-VL suitable for production scenarios spanning document AI, multilingual OCR, software/UI assistance, spatial/embodied tasks, and research on vision-language agents.
Context size:262,144
Price:
$1.44
per million tokens
Start Chat
Qwen: Qwen3 Next 80B A3B Thinking
ToolsReasoning
Qwen3-Next-80B-A3B-Thinking is a reasoning-first chat model in the Qwen3-Next line that outputs structured “thinking” traces by default. It’s designed for hard multi-step problems; math proofs, code synthesis/debugging, logic, and agentic planning, and reports strong results across knowledge, reasoning, coding, alignment, and multilingual evaluations. Compared with prior Qwen3 variants, it emphasizes stability under long chains of thought and efficient scaling during inference, and it is tuned to follow complex instructions while reducing repetitive or off-task behavior. The model is suitable for agent frameworks and tool use (function calling), retrieval-heavy workflows, and standardized benchmarking where step-by-step solutions are required. It supports long, detailed completions and leverages throughput-oriented techniques (e.g., multi-token prediction) for faster generation. Note that it operates in thinking-only mode.
Context size:128,000
Price:
$1.44
per million tokens
Start Chat
Qwen: Qwen Plus 0728
Tools
Qwen Plus 0728, based on the Qwen3 foundation model, is a 1 million context hybrid reasoning model with a balanced performance, speed, and cost combination.
Context size:1,000,000
Price:
$1.44
per million tokens
Start Chat
Qwen: Qwen3 Next 80B A3B Instruct
Tools
Qwen3-Next-80B-A3B-Instruct is an instruction-tuned chat model in the Qwen3-Next series optimized for fast, stable responses without “thinking” traces. It targets complex tasks across reasoning, code generation, knowledge QA, and multilingual use, while remaining robust on alignment and formatting. Compared with prior Qwen3 instruct variants, it focuses on higher throughput and stability on ultra-long inputs and multi-turn dialogues, making it well-suited for RAG, tool use, and agentic workflows that require consistent final answers rather than visible chain-of-thought. The model employs scaling-efficient training and decoding to improve parameter efficiency and inference speed, and has been validated on a broad set of public benchmarks where it reaches or approaches larger Qwen3 systems in several categories while outperforming earlier mid-sized baselines. It is best used as a general assistant, code helper, and long-context task solver in production settings where deterministic, instruction-following outputs are preferred.
Context size:262,144
Price:
$1.32
per million tokens
Start Chat
Qwen: Qwen3 VL 30B A3B Thinking
ToolsReasoning
Qwen3-VL-30B-A3B-Thinking is a multimodal model that unifies strong text generation with visual understanding for images and videos. Its Thinking variant enhances reasoning in STEM, math, and complex tasks. It excels in perception of real-world/synthetic categories, 2D/3D spatial grounding, and long-form visual comprehension, achieving competitive multimodal benchmark results. For agentic use, it handles multi-image multi-turn instructions, video timeline alignments, GUI automation, and visual coding from sketches to debugged UI. Text performance matches flagship Qwen3 models, suiting document AI, OCR, UI assistance, spatial tasks, and agent research.
Context size:131,072
Price:
$1.2
per million tokens
Start Chat
Qwen: Qwen3 Coder 480B A35B
ToolsReasoning
Qwen3-Coder-480B-A35B-Instruct is a Mixture-of-Experts (MoE) code generation model developed by the Qwen team. It is optimized for agentic coding tasks such as function calling, tool use, and long-context reasoning over repositories. The model features 480 billion total parameters, with 35 billion active per forward pass (8 out of 160 experts). Pricing for the Alibaba endpoints varies by context length. Once a request is greater than 128k input tokens, the higher pricing is used.
Context size:262,144
Price:
$1.14
per million tokens
Start Chat
Qwen: Qwen3 VL 30B A3B Instruct
Tools
Qwen3-VL-30B-A3B-Instruct is a multimodal model that unifies strong text generation with visual understanding for images and videos. Its Instruct variant optimizes instruction-following for general multimodal tasks. It excels in perception of real-world/synthetic categories, 2D/3D spatial grounding, and long-form visual comprehension, achieving competitive multimodal benchmark results. For agentic use, it handles multi-image multi-turn instructions, video timeline alignments, GUI automation, and visual coding from sketches to debugged UI. Text performance matches flagship Qwen3 models, suiting document AI, OCR, UI assistance, spatial tasks, and agent research.
Context size:262,144
Price:
$0.72
per million tokens
Start Chat
Qwen: Qwen3 235B A22B Thinking 2507
ToolsReasoning
Qwen3-235B-A22B-Thinking-2507 is a high-performance, open-weight Mixture-of-Experts (MoE) language model optimized for complex reasoning tasks. It activates 22B of its 235B parameters per forward pass and natively supports up to 262,144 tokens of context. This "thinking-only" variant enhances structured logical reasoning, mathematics, science, and long-form generation, showing strong benchmark performance across AIME, SuperGPQA, LiveCodeBench, and MMLU-Redux. It enforces a special reasoning mode (</think>) and is designed for high-token outputs (up to 81,920 tokens) in challenging domains. The model is instruction-tuned and excels at step-by-step reasoning, tool use, agentic workflows, and multilingual tasks. This release represents the most capable open-source variant in the Qwen3-235B series, surpassing many closed models in structured reasoning use cases.
Context size:262,144
Price:
$0.72
per million tokens
Start Chat
Qwen: Qwen3 235B A22B
ToolsReasoning
Qwen3-235B-A22B is a 235B parameter mixture-of-experts (MoE) model developed by Qwen, activating 22B parameters per forward pass. It supports seamless switching between a "thinking" mode for complex reasoning, math, and code tasks, and a "non-thinking" mode for general conversational efficiency. The model demonstrates strong reasoning ability, multilingual support (100+ languages and dialects), advanced instruction-following, and agent tool-calling capabilities. It natively handles a 32K token context window and extends up to 131K tokens using YaRN-based scaling.
Context size:40,960
Price:
$0.72
per million tokens
Start Chat
Qwen: Qwen3 VL 8B Instruct
Tools
Qwen3-VL-8B-Instruct is a multimodal vision-language model from the Qwen3-VL series, built for high-fidelity understanding and reasoning across text, images, and video. It features improved multimodal fusion with Interleaved-MRoPE for long-horizon temporal reasoning, DeepStack for fine-grained visual-text alignment, and text-timestamp alignment for precise event localization. The model supports a native 256K-token context window, extensible to 1M tokens, and handles both static and dynamic media inputs for tasks like document parsing, visual question answering, spatial reasoning, and GUI control. It achieves text understanding comparable to leading LLMs while expanding OCR coverage to 32 languages and enhancing robustness under varied visual conditions.
Context size:131,072
Price:
$0.6
per million tokens
Start Chat
Qwen: Qwen3 235B A22B Instruct 2507
ToolsReasoning
Qwen3-235B-A22B-Instruct-2507 is a multilingual, instruction-tuned mixture-of-experts language model based on the Qwen3-235B architecture, with 22B active parameters per forward pass. It is optimized for general-purpose text generation, including instruction following, logical reasoning, math, code, and tool usage. The model supports a native 262K context length and does not implement "thinking mode" (<think> blocks). Compared to its base variant, this version delivers significant gains in knowledge coverage, long-context reasoning, coding benchmarks, and alignment with open-ended tasks. It is particularly strong on multilingual understanding, math reasoning (e.g., AIME, HMMT), and alignment evaluations like Arena-Hard and WritingBench.
Context size:262,144
Price:
$0.56
per million tokens
Start Chat
Qwen: QwQ 32B
ToolsReasoning
QwQ is the reasoning model of the Qwen series. Compared with conventional instruction-tuned models, QwQ, which is capable of thinking and reasoning, can achieve significantly enhanced performance in downstream tasks, especially hard problems. QwQ-32B is the medium-sized reasoning model, which is capable of achieving competitive performance against state-of-the-art reasoning models, e.g., DeepSeek-R1, o1-mini.
Context size:32,768
Price:
$0.48
per million tokens
Start Chat
Qwen: Qwen3 30B A3B Thinking 2507
ToolsReasoning
Qwen3-30B-A3B-Thinking-2507 is a 30B parameter Mixture-of-Experts reasoning model optimized for complex tasks requiring extended multi-step thinking. The model is designed specifically for “thinking mode,” where internal reasoning traces are separated from final answers. Compared to earlier Qwen3-30B releases, this version improves performance across logical reasoning, mathematics, science, coding, and multilingual benchmarks. It also demonstrates stronger instruction following, tool use, and alignment with human preferences. With higher reasoning efficiency and extended output budgets, it is best suited for advanced research, competitive problem solving, and agentic applications requiring structured long-context reasoning.
Context size:32,768
Price:
$0.41
per million tokens
Start Chat
Qwen: Qwen3 30B A3B Instruct 2507
Tools
Qwen3-30B-A3B-Instruct-2507 is a 30.5B-parameter mixture-of-experts language model from Qwen, with 3.3B active parameters per inference. It operates in non-thinking mode and is designed for high-quality instruction following, multilingual understanding, and agentic tool use. Post-trained on instruction data, it demonstrates competitive performance across reasoning (AIME, ZebraLogic), coding (MultiPL-E, LiveCodeBench), and alignment (IFEval, WritingBench) benchmarks. It outperforms its non-instruct variant on subjective and open-ended tasks while retaining strong factual and coding performance.
Context size:262,144
Price:
$0.4
per million tokens
Start Chat
Qwen: Qwen3 Coder 30B A3B Instruct
Tools
Qwen3-Coder-30B-A3B-Instruct is a 30.5B parameter Mixture-of-Experts (MoE) model with 128 experts (8 active per forward pass), designed for advanced code generation, repository-scale understanding, and agentic tool use. Built on the Qwen3 architecture, it supports a native context length of 256K tokens (extendable to 1M with Yarn) and performs strongly in tasks involving function calls, browser use, and structured code completion. This model is optimized for instruction-following without “thinking mode”, and integrates well with OpenAI-compatible tool-use formats.
Context size:160,000
Price:
$0.33
per million tokens
Start Chat
Qwen: Qwen3 8B
ToolsReasoning
Qwen3-8B is a dense 8.2B parameter causal language model from the Qwen3 series, designed for both reasoning-heavy tasks and efficient dialogue. It supports seamless switching between "thinking" mode for math, coding, and logical inference, and "non-thinking" mode for general conversation. The model is fine-tuned for instruction-following, agent integration, creative writing, and multilingual use across 100+ languages and dialects. It natively supports a 32K token context window and can extend to 131K tokens with YaRN scaling.
Context size:32,000
Price:
$0.3
per million tokens
Start Chat
Qwen: Qwen3 32B
ToolsReasoning
Qwen3-32B is a dense 32.8B parameter causal language model from the Qwen3 series, optimized for both complex reasoning and efficient dialogue. It supports seamless switching between a "thinking" mode for tasks like math, coding, and logical inference, and a "non-thinking" mode for faster, general-purpose conversation. The model demonstrates strong performance in instruction-following, agent tool use, creative writing, and multilingual tasks across 100+ languages and dialects. It natively handles 32K token contexts and can extend to 131K tokens using YaRN-based scaling.
Context size:40,960
Price:
$0.29
per million tokens
Start Chat
Qwen: Qwen3 30B A3B
ToolsReasoning
Qwen3, the latest generation in the Qwen large language model series, features both dense and mixture-of-experts (MoE) architectures to excel in reasoning, multilingual support, and advanced agent tasks. Its unique ability to switch seamlessly between a thinking mode for complex reasoning and a non-thinking mode for efficient dialogue ensures versatile, high-quality performance. Significantly outperforming prior models like QwQ and Qwen2.5, Qwen3 delivers superior mathematics, coding, commonsense reasoning, creative writing, and interactive dialogue capabilities. The Qwen3-30B-A3B variant includes 30.5 billion parameters (3.3 billion activated), 48 layers, 128 experts (8 activated per task), and supports up to 131K token contexts with YaRN, setting a new standard among open-source models.
Context size:40,960
Price:
$0.27
per million tokens
Start Chat
Qwen: Qwen3 14B
ToolsReasoning
Qwen3-14B is a dense 14.8B parameter causal language model from the Qwen3 series, designed for both complex reasoning and efficient dialogue. It supports seamless switching between a "thinking" mode for tasks like math, programming, and logical inference, and a "non-thinking" mode for general-purpose conversation. The model is fine-tuned for instruction-following, agent tool use, creative writing, and multilingual tasks across 100+ languages and dialects. It natively handles 32K token contexts and can extend to 131K tokens using YaRN-based scaling.
Context size:40,960
Price:
$0.27
per million tokens
Start Chat
Qwen: Qwen2.5 VL 32B Instruct
Qwen2.5-VL-32B is a multimodal vision-language model fine-tuned through reinforcement learning for enhanced mathematical reasoning, structured outputs, and visual problem-solving capabilities. It excels at visual analysis tasks, including object recognition, textual interpretation within images, and precise event localization in extended videos. Qwen2.5-VL-32B demonstrates state-of-the-art performance across multimodal benchmarks such as MMMU, MathVista, and VideoMME, while maintaining strong reasoning and clarity in text-based tasks like MMLU, mathematical problem-solving, and code generation.
Context size:16,384
Price:
$0.27
per million tokens
Start Chat
Qwen: Qwen2.5 Coder 7B Instruct
Qwen2.5-Coder-7B-Instruct is a 7B parameter instruction-tuned language model optimized for code-related tasks such as code generation, reasoning, and bug fixing. Based on the Qwen2.5 architecture, it incorporates enhancements like RoPE, SwiGLU, RMSNorm, and GQA attention with support for up to 128K tokens using YaRN-based extrapolation. It is trained on a large corpus of source code, synthetic data, and text-code grounding, providing robust performance across programming languages and agentic coding workflows. This model is part of the Qwen2.5-Coder family and offers strong compatibility with tools like vLLM for efficient deployment. Released under the Apache 2.0 license.
Context size:32,768
Price:
$0.11
per million tokens
Start Chat
Qwen: Qwen3 Next 80B A3B Instruct (free)
Tools
Qwen3-Next-80B-A3B-Instruct is an instruction-tuned chat model in the Qwen3-Next series optimized for fast, stable responses without “thinking” traces. It targets complex tasks across reasoning, code generation, knowledge QA, and multilingual use, while remaining robust on alignment and formatting. Compared with prior Qwen3 instruct variants, it focuses on higher throughput and stability on ultra-long inputs and multi-turn dialogues, making it well-suited for RAG, tool use, and agentic workflows that require consistent final answers rather than visible chain-of-thought. The model employs scaling-efficient training and decoding to improve parameter efficiency and inference speed, and has been validated on a broad set of public benchmarks where it reaches or approaches larger Qwen3 systems in several categories while outperforming earlier mid-sized baselines. It is best used as a general assistant, code helper, and long-context task solver in production settings where deterministic, instruction-following outputs are preferred.
Context size:262,144
Price:
Free
Start Chat
Qwen: Qwen3 Coder 480B A35B (free)
Tools
Qwen3-Coder-480B-A35B-Instruct is a Mixture-of-Experts (MoE) code generation model developed by the Qwen team. It is optimized for agentic coding tasks such as function calling, tool use, and long-context reasoning over repositories. The model features 480 billion total parameters, with 35 billion active per forward pass (8 out of 160 experts). Pricing for the Alibaba endpoints varies by context length. Once a request is greater than 128k input tokens, the higher pricing is used.
Context size:262,000
Price:
Free
Start Chat
Qwen: Qwen3 4B (free)
ToolsReasoning
Qwen3-4B is a 4 billion parameter dense language model from the Qwen3 series, designed to support both general-purpose and reasoning-intensive tasks. It introduces a dual-mode architecture—thinking and non-thinking—allowing dynamic switching between high-precision logical reasoning and efficient dialogue generation. This makes it well-suited for multi-turn chat, instruction following, and complex agent workflows.
Context size:40,960
Price:
Free
Start Chat
M

Moonshot AI

7 models available

MoonshotAI: Kimi K2.5
ToolsReasoning
Kimi K2.5 is Moonshot AI's native multimodal model, delivering state-of-the-art visual coding capability and a self-directed agent swarm paradigm. Built on Kimi K2 with continued pretraining over approximately 15T mixed visual and text tokens, it delivers strong performance in general reasoning, visual coding, and agentic tool-calling.
Context size:262,144
Price:
$3.36
per million tokens
Start Chat
MoonshotAI: Kimi K2 0905 (exacto)
Tools
Kimi K2 0905 is the September update of [Kimi K2 0711](moonshotai/kimi-k2). It is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It supports long-context inference up to 256k tokens, extended from the previous 128k. This update improves agentic coding with higher accuracy and better generalization across scaffolds, and enhances frontend coding with more aesthetic and functional outputs for web, 3D, and related tasks. Kimi K2 is optimized for agentic capabilities, including advanced tool use, reasoning, and code synthesis. It excels across coding (LiveCodeBench, SWE-bench), reasoning (ZebraLogic, GPQA), and tool-use (Tau2, AceBench) benchmarks. The model is trained with a novel stack incorporating the MuonClip optimizer for stable large-scale MoE training.
Context size:262,144
Price:
$3
per million tokens
Start Chat
MoonshotAI: Kimi K2 0711
Tools
Kimi K2 Instruct is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It is optimized for agentic capabilities, including advanced tool use, reasoning, and code synthesis. Kimi K2 excels across a broad range of benchmarks, particularly in coding (LiveCodeBench, SWE-bench), reasoning (ZebraLogic, GPQA), and tool-use (Tau2, AceBench) tasks. It supports long-context inference up to 128K tokens and is designed with a novel training stack that includes the MuonClip optimizer for stable large-scale MoE training.
Context size:131,072
Price:
$2.88
per million tokens
Start Chat
MoonshotAI: Kimi K2 0905
Tools
Kimi K2 0905 is the September update of [Kimi K2 0711](moonshotai/kimi-k2). It is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It supports long-context inference up to 256k tokens, extended from the previous 128k. This update improves agentic coding with higher accuracy and better generalization across scaffolds, and enhances frontend coding with more aesthetic and functional outputs for web, 3D, and related tasks. Kimi K2 is optimized for agentic capabilities, including advanced tool use, reasoning, and code synthesis. It excels across coding (LiveCodeBench, SWE-bench), reasoning (ZebraLogic, GPQA), and tool-use (Tau2, AceBench) benchmarks. The model is trained with a novel stack incorporating the MuonClip optimizer for stable large-scale MoE training.
Context size:262,144
Price:
$2.28
per million tokens
Start Chat
MoonshotAI: Kimi K2 Thinking
ToolsReasoning
Kimi K2 Thinking is Moonshot AI’s most advanced open reasoning model to date, extending the K2 series into agentic, long-horizon reasoning. Built on the trillion-parameter Mixture-of-Experts (MoE) architecture introduced in Kimi K2, it activates 32 billion parameters per forward pass and supports 256 k-token context windows. The model is optimized for persistent step-by-step thought, dynamic tool invocation, and complex reasoning workflows that span hundreds of turns. It interleaves step-by-step reasoning with tool use, enabling autonomous research, coding, and writing that can persist for hundreds of sequential actions without drift. It sets new open-source benchmarks on HLE, BrowseComp, SWE-Multilingual, and LiveCodeBench, while maintaining stable multi-agent behavior through 200–300 tool calls. Built on a large-scale MoE architecture with MuonClip optimization, it combines strong reasoning depth with high inference efficiency for demanding agentic and analytical tasks.
Context size:262,144
Price:
$2.1
per million tokens
Start Chat
MoonshotAI: Kimi Dev 72B
Reasoning
Kimi-Dev-72B is an open-source large language model fine-tuned for software engineering and issue resolution tasks. Based on Qwen2.5-72B, it is optimized using large-scale reinforcement learning that applies code patches in real repositories and validates them via full test suite execution—rewarding only correct, robust completions. The model achieves 60.4% on SWE-bench Verified, setting a new benchmark among open-source models for software bug fixing and code reasoning.
Context size:131,072
Price:
$1.38
per million tokens
Start Chat
MoonshotAI: Kimi K2 0711 (free)
Kimi K2 Instruct is a large-scale Mixture-of-Experts (MoE) language model developed by Moonshot AI, featuring 1 trillion total parameters with 32 billion active per forward pass. It is optimized for agentic capabilities, including advanced tool use, reasoning, and code synthesis. Kimi K2 excels across a broad range of benchmarks, particularly in coding (LiveCodeBench, SWE-bench), reasoning (ZebraLogic, GPQA), and tool-use (Tau2, AceBench) tasks. It supports long-context inference up to 128K tokens and is designed with a novel training stack that includes the MuonClip optimizer for stable large-scale MoE training.
Context size:32,768
Price:
Free
Start Chat
M

MiniMax

4 models available

MiniMax: MiniMax M1
ToolsReasoning
MiniMax-M1 is a large-scale, open-weight reasoning model designed for extended context and high-efficiency inference. It leverages a hybrid Mixture-of-Experts (MoE) architecture paired with a custom "lightning attention" mechanism, allowing it to process long sequences—up to 1 million tokens—while maintaining competitive FLOP efficiency. With 456 billion total parameters and 45.9B active per token, this variant is optimized for complex, multi-step reasoning tasks. Trained via a custom reinforcement learning pipeline (CISPO), M1 excels in long-context understanding, software engineering, agentic tool use, and mathematical reasoning. Benchmarks show strong performance across FullStackBench, SWE-bench, MATH, GPQA, and TAU-Bench, often outperforming other open models like DeepSeek R1 and Qwen3-235B.
Context size:1,000,000
Price:
$2.64
per million tokens
Start Chat
MiniMax: MiniMax M2-her
MiniMax M2-her is a dialogue-first large language model built for immersive roleplay, character-driven chat, and expressive multi-turn conversations. Designed to stay consistent in tone and personality, it supports rich message roles (user_system, group, sample_message_user, sample_message_ai) and can learn from example dialogue to better match the style and pacing of your scenario, making it a strong choice for storytelling, companions, and conversational experiences where natural flow and vivid interaction matter most.
Context size:65,536
Price:
$1.44
per million tokens
Start Chat
MiniMax: MiniMax M2.1
ToolsReasoning
MiniMax-M2.1 is a lightweight, state-of-the-art large language model optimized for coding, agentic workflows, and modern application development. With only 10 billion activated parameters, it delivers a major jump in real-world capability while maintaining exceptional latency, scalability, and cost efficiency. Compared to its predecessor, M2.1 delivers cleaner, more concise outputs and faster perceived response times. It shows leading multilingual coding performance across major systems and application languages, achieving 49.4% on Multi-SWE-Bench and 72.5% on SWE-Bench Multilingual, and serves as a versatile agent “brain” for IDEs, coding tools, and general-purpose assistance. To avoid degrading this model's performance, MiniMax highly recommends preserving reasoning between turns. Learn more about using reasoning_details to pass back reasoning in our [docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#preserving-reasoning-blocks).
Context size:196,608
Price:
$1.32
per million tokens
Start Chat
MiniMax: MiniMax M2
ToolsReasoning
MiniMax-M2 is a compact, high-efficiency large language model optimized for end-to-end coding and agentic workflows. With 10 billion activated parameters (230 billion total), it delivers near-frontier intelligence across general reasoning, tool use, and multi-step task execution while maintaining low latency and deployment efficiency. The model excels in code generation, multi-file editing, compile-run-fix loops, and test-validated repair, showing strong results on SWE-Bench Verified, Multi-SWE-Bench, and Terminal-Bench. It also performs competitively in agentic evaluations such as BrowseComp and GAIA, effectively handling long-horizon planning, retrieval, and recovery from execution errors. Benchmarked by [Artificial Analysis](https://artificialanalysis.ai/models/minimax-m2), MiniMax-M2 ranks among the top open-source models for composite intelligence, spanning mathematics, science, and instruction-following. Its small activation footprint enables fast inference, high concurrency, and improved unit economics, making it well-suited for large-scale agents, developer assistants, and reasoning-driven applications that require responsiveness and cost efficiency. To avoid degrading this model's performance, MiniMax highly recommends preserving reasoning between turns. Learn more about using reasoning_details to pass back reasoning in our [docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#preserving-reasoning-blocks).
Context size:196,608
Price:
$1.2
per million tokens
Start Chat
M

Mistral

16 models available

Mistral: Mistral Medium 3.1
Tools
Mistral Medium 3.1 is an updated version of Mistral Medium 3, which is a high-performance enterprise-grade language model designed to deliver frontier-level capabilities at significantly reduced operational cost. It balances state-of-the-art reasoning and multimodal performance with 8× lower cost compared to traditional large models, making it suitable for scalable deployments across professional and industrial use cases. The model excels in domains such as coding, STEM reasoning, and enterprise adaptation. It supports hybrid, on-prem, and in-VPC deployments and is optimized for integration into custom workflows. Mistral Medium 3.1 offers competitive accuracy relative to larger models like Claude Sonnet 3.5/3.7, Llama 4 Maverick, and Command R+, while maintaining broad compatibility across cloud environments.
Context size:131,072
Price:
$2.4
per million tokens
Start Chat
Mistral: Devstral Medium
Tools
Devstral Medium is a high-performance code generation and agentic reasoning model developed jointly by Mistral AI and All Hands AI. Positioned as a step up from Devstral Small, it achieves 61.6% on SWE-Bench Verified, placing it ahead of Gemini 2.5 Pro and GPT-4.1 in code-related tasks, at a fraction of the cost. It is designed for generalization across prompt styles and tool use in code agents and frameworks. Devstral Medium is available via API only (not open-weight), and supports enterprise deployment on private infrastructure, with optional fine-tuning capabilities.
Context size:131,072
Price:
$2.4
per million tokens
Start Chat
Mistral: Mistral Medium 3
Tools
Mistral Medium 3 is a high-performance enterprise-grade language model designed to deliver frontier-level capabilities at significantly reduced operational cost. It balances state-of-the-art reasoning and multimodal performance with 8× lower cost compared to traditional large models, making it suitable for scalable deployments across professional and industrial use cases. The model excels in domains such as coding, STEM reasoning, and enterprise adaptation. It supports hybrid, on-prem, and in-VPC deployments and is optimized for integration into custom workflows. Mistral Medium 3 offers competitive accuracy relative to larger models like Claude Sonnet 3.5/3.7, Llama 4 Maverick, and Command R+, while maintaining broad compatibility across cloud environments.
Context size:131,072
Price:
$2.4
per million tokens
Start Chat
Mistral: Mistral Large 3 2512
Tools
Mistral Large 3 2512 is Mistral’s most capable model to date, featuring a sparse mixture-of-experts architecture with 41B active parameters (675B total), and released under the Apache 2.0 license.
Context size:262,144
Price:
$1.8
per million tokens
Start Chat
Mistral: Codestral 2508
Tools
Mistral's cutting-edge language model for coding released end of July 2025. Codestral specializes in low-latency, high-frequency tasks such as fill-in-the-middle (FIM), code correction and test generation. [Blog Post](https://mistral.ai/news/codestral-25-08)
Context size:256,000
Price:
$1.08
per million tokens
Start Chat
Mistral: Saba
Tools
Mistral Saba is a 24B-parameter language model specifically designed for the Middle East and South Asia, delivering accurate and contextually relevant responses while maintaining efficient performance. Trained on curated regional datasets, it supports multiple Indian-origin languages—including Tamil and Malayalam—alongside Arabic. This makes it a versatile option for a range of regional and multilingual applications. Read more at the blog post [here](https://mistral.ai/en/news/mistral-saba)
Context size:32,768
Price:
$0.72
per million tokens
Start Chat
Mistral: Mistral Small Creative
Tools
Mistral Small Creative is an experimental small model designed for creative writing, narrative generation, roleplay and character-driven dialogue, general-purpose instruction following, and conversational agents.
Context size:32,768
Price:
$0.36
per million tokens
Start Chat
Mistral: Voxtral Small 24B 2507
Tools
Voxtral Small is an enhancement of Mistral Small 3, incorporating state-of-the-art audio input capabilities while retaining best-in-class text performance. It excels at speech transcription, translation and audio understanding. Input audio is priced at $100 per million seconds.
Context size:32,000
Price:
$0.36
per million tokens
Start Chat
Mistral: Devstral Small 1.1
Tools
Devstral Small 1.1 is a 24B parameter open-weight language model for software engineering agents, developed by Mistral AI in collaboration with All Hands AI. Finetuned from Mistral Small 3.1 and released under the Apache 2.0 license, it features a 128k token context window and supports both Mistral-style function calling and XML output formats. Designed for agentic coding workflows, Devstral Small 1.1 is optimized for tasks such as codebase exploration, multi-file edits, and integration into autonomous development agents like OpenHands and Cline. It achieves 53.6% on SWE-Bench Verified, surpassing all other open models on this benchmark, while remaining lightweight enough to run on a single 4090 GPU or Apple silicon machine. The model uses a Tekken tokenizer with a 131k vocabulary and is deployable via vLLM, Transformers, Ollama, LM Studio, and other OpenAI-compatible runtimes.
Context size:131,072
Price:
$0.36
per million tokens
Start Chat
Mistral: Devstral 2 2512
Tools
Devstral 2 is a state-of-the-art open-source model by Mistral AI specializing in agentic coding. It is a 123B-parameter dense transformer model supporting a 256K context window. Devstral 2 supports exploring codebases and orchestrating changes across multiple files while maintaining architecture-level context. It tracks framework dependencies, detects failures, and retries with corrections—solving challenges like bug fixing and modernizing legacy systems. The model can be fine-tuned to prioritize specific languages or optimize for large enterprise codebases. It is available under a modified MIT license.
Context size:262,144
Price:
$0.27
per million tokens
Start Chat
Mistral: Ministral 3 14B 2512
Tools
The largest model in the Ministral 3 family, Ministral 3 14B offers frontier capabilities and performance comparable to its larger Mistral Small 3.2 24B counterpart. A powerful and efficient language model with vision capabilities.
Context size:262,144
Price:
$0.24
per million tokens
Start Chat
Mistral: Mistral Small 3.2 24B
Tools
Mistral-Small-3.2-24B-Instruct-2506 is an updated 24B parameter model from Mistral optimized for instruction following, repetition reduction, and improved function calling. Compared to the 3.1 release, version 3.2 significantly improves accuracy on WildBench and Arena Hard, reduces infinite generations, and delivers gains in tool use and structured output tasks. It supports image and text inputs with structured outputs, function/tool calling, and strong performance across coding (HumanEval+, MBPP), STEM (MMLU, MATH, GPQA), and vision benchmarks (ChartQA, DocVQA).
Context size:131,072
Price:
$0.22
per million tokens
Start Chat
Mistral: Ministral 3 8B 2512
Tools
A balanced model in the Ministral 3 family, Ministral 3 8B is a powerful, efficient tiny language model with vision capabilities.
Context size:262,144
Price:
$0.18
per million tokens
Start Chat
Mistral: Mistral Small 3.1 24B
Tools
Mistral Small 3.1 24B Instruct is an upgraded variant of Mistral Small 3 (2501), featuring 24 billion parameters with advanced multimodal capabilities. It provides state-of-the-art performance in text-based reasoning and vision tasks, including image analysis, programming, mathematical reasoning, and multilingual support across dozens of languages. Equipped with an extensive 128k token context window and optimized for efficient local inference, it supports use cases such as conversational agents, function calling, long-document comprehension, and privacy-sensitive deployments. The updated version is [Mistral Small 3.2](mistralai/mistral-small-3.2-24b-instruct)
Context size:131,072
Price:
$0.14
per million tokens
Start Chat
Mistral: Ministral 3 3B 2512
Tools
The smallest model in the Ministral 3 family, Ministral 3 3B is a powerful, efficient tiny language model with vision capabilities.
Context size:131,072
Price:
$0.12
per million tokens
Start Chat
Mistral: Mistral Small 3.1 24B (free)
Tools
Mistral Small 3.1 24B Instruct is an upgraded variant of Mistral Small 3 (2501), featuring 24 billion parameters with advanced multimodal capabilities. It provides state-of-the-art performance in text-based reasoning and vision tasks, including image analysis, programming, mathematical reasoning, and multilingual support across dozens of languages. Equipped with an extensive 128k token context window and optimized for efficient local inference, it supports use cases such as conversational agents, function calling, long-document comprehension, and privacy-sensitive deployments. The updated version is [Mistral Small 3.2](mistralai/mistral-small-3.2-24b-instruct)
Context size:128,000
Price:
Free
Start Chat
M

Morph

2 models available

Morph: Morph V3 Large
Morph's high-accuracy apply model for complex code edits. ~4,500 tokens/sec with 98% accuracy for precise code transformations. The model requires the prompt to be in the following format: <instruction>{instruction}</instruction> <code>{initial_code}</code> <update>{edit_snippet}</update> Zero Data Retention is enabled for Morph. Learn more about this model in their [documentation](https://docs.morphllm.com/quickstart)
Context size:262,144
Price:
$2.28
per million tokens
Start Chat
Morph: Morph V3 Fast
Morph's fastest apply model for code edits. ~10,500 tokens/sec with 96% accuracy for rapid code transformations. The model requires the prompt to be in the following format: <instruction>{instruction}</instruction> <code>{initial_code}</code> <update>{edit_snippet}</update> Zero Data Retention is enabled for Morph. Learn more about this model in their [documentation](https://docs.morphllm.com/quickstart)
Context size:81,920
Price:
$1.44
per million tokens
Start Chat
Z

Z.ai

10 models available

Z.AI: GLM 4.5V
ToolsReasoning
GLM-4.5V is a vision-language foundation model for multimodal agent applications. Built on a Mixture-of-Experts (MoE) architecture with 106B parameters and 12B activated parameters, it achieves state-of-the-art results in video understanding, image Q&A, OCR, and document parsing, with strong gains in front-end web coding, grounding, and spatial reasoning. It offers a hybrid inference mode: a "thinking mode" for deep reasoning and a "non-thinking mode" for fast responses. Reasoning behavior can be toggled via the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)
Context size:65,536
Price:
$2.16
per million tokens
Start Chat
Z.AI: GLM 4.6 (exacto)
ToolsReasoning
Compared with GLM-4.5, this generation brings several key improvements: Longer context window: The context window has been expanded from 128K to 200K tokens, enabling the model to handle more complex agentic tasks. Superior coding performance: The model achieves higher scores on code benchmarks and demonstrates better real-world performance in applications such as Claude Code、Cline、Roo Code and Kilo Code, including improvements in generating visually polished front-end pages. Advanced reasoning: GLM-4.6 shows a clear improvement in reasoning performance and supports tool use during inference, leading to stronger overall capability. More capable agents: GLM-4.6 exhibits stronger performance in tool using and search-based agents, and integrates more effectively within agent frameworks. Refined writing: Better aligns with human preferences in style and readability, and performs more naturally in role-playing scenarios.
Context size:204,800
Price:
$2.12
per million tokens
Start Chat
Z.AI: GLM 4.5
ToolsReasoning
GLM-4.5 is our latest flagship foundation model, purpose-built for agent-based applications. It leverages a Mixture-of-Experts (MoE) architecture and supports a context length of up to 128k tokens. GLM-4.5 delivers significantly enhanced capabilities in reasoning, code generation, and agent alignment. It supports a hybrid inference mode with two options, a "thinking mode" designed for complex reasoning and tool use, and a "non-thinking mode" optimized for instant responses. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)
Context size:131,072
Price:
$1.86
per million tokens
Start Chat
Z.AI: GLM 4.7
ToolsReasoning
GLM-4.7 is Z.AI’s latest flagship model, featuring upgrades in two key areas: enhanced programming capabilities and more stable multi-step reasoning/execution. It demonstrates significant improvements in executing complex agent tasks while delivering more natural conversational experiences and superior front-end aesthetics.
Context size:202,752
Price:
$1.8
per million tokens
Start Chat
Z.AI: GLM 4.6
ToolsReasoning
Compared with GLM-4.5, this generation brings several key improvements: Longer context window: The context window has been expanded from 128K to 200K tokens, enabling the model to handle more complex agentic tasks. Superior coding performance: The model achieves higher scores on code benchmarks and demonstrates better real-world performance in applications such as Claude Code、Cline、Roo Code and Kilo Code, including improvements in generating visually polished front-end pages. Advanced reasoning: GLM-4.6 shows a clear improvement in reasoning performance and supports tool use during inference, leading to stronger overall capability. More capable agents: GLM-4.6 exhibits stronger performance in tool using and search-based agents, and integrates more effectively within agent frameworks. Refined writing: Better aligns with human preferences in style and readability, and performs more naturally in role-playing scenarios.
Context size:202,752
Price:
$1.8
per million tokens
Start Chat
Z.AI: GLM 4.6V
ToolsReasoning
GLM-4.6V is a large multimodal model designed for high-fidelity visual understanding and long-context reasoning across images, documents, and mixed media. It supports up to 128K tokens, processes complex page layouts and charts directly as visual inputs, and integrates native multimodal function calling to connect perception with downstream tool execution. The model also enables interleaved image-text generation and UI reconstruction workflows, including screenshot-to-HTML synthesis and iterative visual editing.
Context size:131,072
Price:
$1.08
per million tokens
Start Chat
Z.AI: GLM 4.7 Flash
ToolsReasoning
As a 30B-class SOTA model, GLM-4.7-Flash offers a new option that balances performance and efficiency. It is further optimized for agentic coding use cases, strengthening coding capabilities, long-horizon task planning, and tool collaboration, and has achieved leading performance among open-source models of the same size on several current public benchmark leaderboards.
Context size:200,000
Price:
$0.48
per million tokens
Start Chat
Z.AI: GLM 4.5 Air
ToolsReasoning
GLM-4.5-Air is the lightweight variant of our latest flagship model family, also purpose-built for agent-centric applications. Like GLM-4.5, it adopts the Mixture-of-Experts (MoE) architecture but with a more compact parameter size. GLM-4.5-Air also supports hybrid inference modes, offering a "thinking mode" for advanced reasoning and tool use, and a "non-thinking mode" for real-time interaction. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)
Context size:131,072
Price:
$0.27
per million tokens
Start Chat
Z.AI: GLM 4 32B
Tools
GLM 4 32B is a cost-effective foundation language model. It can efficiently perform complex tasks and has significantly enhanced capabilities in tool use, online search, and code-related intelligent tasks. It is made by the same lab behind the thudm models.
Context size:128,000
Price:
$0.12
per million tokens
Start Chat
Z.AI: GLM 4.5 Air (free)
ToolsReasoning
GLM-4.5-Air is the lightweight variant of our latest flagship model family, also purpose-built for agent-centric applications. Like GLM-4.5, it adopts the Mixture-of-Experts (MoE) architecture but with a more compact parameter size. GLM-4.5-Air also supports hybrid inference modes, offering a "thinking mode" for advanced reasoning and tool use, and a "non-thinking mode" for real-time interaction. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)
Context size:131,072
Price:
Free
Start Chat
D

DeepSeek

9 models available

DeepSeek: R1 0528
ToolsReasoning
May 28th update to the [original DeepSeek R1](/deepseek/deepseek-r1) Performance on par with [OpenAI o1](/openai/o1), but open-sourced and with fully open reasoning tokens. It's 671B parameters in size, with 37B active in an inference pass. Fully open-source model.
Context size:163,840
Price:
$2.1
per million tokens
Start Chat
DeepSeek: DeepSeek V3 0324
ToolsReasoning
DeepSeek V3, a 685B-parameter, mixture-of-experts model, is the latest iteration of the flagship chat model family from the DeepSeek team. It succeeds the [DeepSeek V3](/deepseek/deepseek-chat-v3) model and performs really well on a variety of tasks.
Context size:163,840
Price:
$1.05
per million tokens
Start Chat
DeepSeek: DeepSeek V3.1 Terminus (exacto)
ToolsReasoning
DeepSeek-V3.1 Terminus is an update to [DeepSeek V3.1](/deepseek/deepseek-chat-v3.1) that maintains the model's original capabilities while addressing issues reported by users, including language consistency and agent capabilities, further optimizing the model's performance in coding and search agents. It is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config) The model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows.
Context size:163,840
Price:
$0.95
per million tokens
Start Chat
DeepSeek: DeepSeek V3.1 Terminus
ToolsReasoning
DeepSeek-V3.1 Terminus is an update to [DeepSeek V3.1](/deepseek/deepseek-chat-v3.1) that maintains the model's original capabilities while addressing issues reported by users, including language consistency and agent capabilities, further optimizing the model's performance in coding and search agents. It is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config) The model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows.
Context size:163,840
Price:
$0.95
per million tokens
Start Chat
DeepSeek: DeepSeek V3.1
ToolsReasoning
DeepSeek-V3.1 is a large hybrid reasoning model (671B parameters, 37B active) that supports both thinking and non-thinking modes via prompt templates. It extends the DeepSeek-V3 base with a two-phase long-context training process, reaching up to 128K tokens, and uses FP8 microscaling for efficient inference. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config) The model improves tool use, code generation, and reasoning efficiency, achieving performance comparable to DeepSeek-R1 on difficult benchmarks while responding more quickly. It supports structured tool calling, code agents, and search agents, making it suitable for research, coding, and agentic workflows. It succeeds the [DeepSeek V3-0324](/deepseek/deepseek-chat-v3-0324) model and performs well on a variety of tasks.
Context size:32,768
Price:
$0.9
per million tokens
Start Chat
DeepSeek: DeepSeek V3.2 Speciale
Reasoning
DeepSeek-V3.2-Speciale is a high-compute variant of DeepSeek-V3.2 optimized for maximum reasoning and agentic performance. It builds on DeepSeek Sparse Attention (DSA) for efficient long-context processing, then scales post-training reinforcement learning to push capability beyond the base model. Reported evaluations place Speciale ahead of GPT-5 on difficult reasoning workloads, with proficiency comparable to Gemini-3.0-Pro, while retaining strong coding and tool-use reliability. Like V3.2, it benefits from a large-scale agentic task synthesis pipeline that improves compliance and generalization in interactive environments.
Context size:163,840
Price:
$0.5
per million tokens
Start Chat
DeepSeek: DeepSeek V3.2
ToolsReasoning
DeepSeek-V3.2 is a large language model designed to harmonize high computational efficiency with strong reasoning and agentic tool-use performance. It introduces DeepSeek Sparse Attention (DSA), a fine-grained sparse attention mechanism that reduces training and inference cost while preserving quality in long-context scenarios. A scalable reinforcement learning post-training framework further improves reasoning, with reported performance in the GPT-5 class, and the model has demonstrated gold-medal results on the 2025 IMO and IOI. V3.2 also uses a large-scale agentic task synthesis pipeline to better integrate reasoning into tool-use settings, boosting compliance and generalization in interactive environments. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config)
Context size:163,840
Price:
$0.46
per million tokens
Start Chat
DeepSeek: DeepSeek V3.2 Exp
ToolsReasoning
DeepSeek-V3.2-Exp is an experimental large language model released by DeepSeek as an intermediate step between V3.1 and future architectures. It introduces DeepSeek Sparse Attention (DSA), a fine-grained sparse attention mechanism designed to improve training and inference efficiency in long-context scenarios while maintaining output quality. Users can control the reasoning behaviour with the `reasoning` `enabled` boolean. [Learn more in our docs](https://openrouter.ai/docs/use-cases/reasoning-tokens#enable-reasoning-with-default-config) The model was trained under conditions aligned with V3.1-Terminus to enable direct comparison. Benchmarking shows performance roughly on par with V3.1 across reasoning, coding, and agentic tool-use tasks, with minor tradeoffs and gains depending on the domain. This release focuses on validating architectural optimizations for extended context lengths rather than advancing raw task accuracy, making it primarily a research-oriented model for exploring efficient transformer designs.
Context size:163,840
Price:
$0.39
per million tokens
Start Chat
DeepSeek: R1 0528 (free)
Reasoning
May 28th update to the [original DeepSeek R1](/deepseek/deepseek-r1) Performance on par with [OpenAI o1](/openai/o1), but open-sourced and with fully open reasoning tokens. It's 671B parameters in size, with 37B active in an inference pass. Fully open-source model.
Context size:163,840
Price:
Free
Start Chat
B

Baidu

5 models available

Baidu: ERNIE 4.5 VL 424B A47B
Reasoning
ERNIE-4.5-VL-424B-A47B is a multimodal Mixture-of-Experts (MoE) model from Baidu’s ERNIE 4.5 series, featuring 424B total parameters with 47B active per token. It is trained jointly on text and image data using a heterogeneous MoE architecture and modality-isolated routing to enable high-fidelity cross-modal reasoning, image understanding, and long-context generation (up to 131k tokens). Fine-tuned with techniques like SFT, DPO, UPO, and RLVR, this model supports both “thinking” and non-thinking inference modes. Designed for vision-language tasks in English and Chinese, it is optimized for efficient scaling and can operate under 4-bit/8-bit quantization.
Context size:123,000
Price:
$1.5
per million tokens
Start Chat
Baidu: ERNIE 4.5 300B A47B
ERNIE-4.5-300B-A47B is a 300B parameter Mixture-of-Experts (MoE) language model developed by Baidu as part of the ERNIE 4.5 series. It activates 47B parameters per token and supports text generation in both English and Chinese. Optimized for high-throughput inference and efficient scaling, it uses a heterogeneous MoE structure with advanced routing and quantization strategies, including FP8 and 2-bit formats. This version is fine-tuned for language-only tasks and supports reasoning, tool parameters, and extended context lengths up to 131k tokens. Suitable for general-purpose LLM applications with high reasoning and throughput demands.
Context size:123,000
Price:
$1.32
per million tokens
Start Chat
Baidu: ERNIE 4.5 VL 28B A3B
ToolsReasoning
A powerful multimodal Mixture-of-Experts chat model featuring 28B total parameters with 3B activated per token, delivering exceptional text and vision understanding through its innovative heterogeneous MoE structure with modality-isolated routing. Built with scaling-efficient infrastructure for high-throughput training and inference, the model leverages advanced post-training techniques including SFT, DPO, and UPO for optimized performance, while supporting an impressive 131K context length and RLVR alignment for superior cross-modal reasoning and generation capabilities.
Context size:30,000
Price:
$0.68
per million tokens
Start Chat
Baidu: ERNIE 4.5 21B A3B Thinking
Reasoning
ERNIE-4.5-21B-A3B-Thinking is Baidu's upgraded lightweight MoE model, refined to boost reasoning depth and quality for top-tier performance in logical puzzles, math, science, coding, text generation, and expert-level academic benchmarks.
Context size:131,072
Price:
$0.34
per million tokens
Start Chat
Baidu: ERNIE 4.5 21B A3B
Tools
A sophisticated text-based Mixture-of-Experts (MoE) model featuring 21B total parameters with 3B activated per token, delivering exceptional multimodal understanding and generation through heterogeneous MoE structures and modality-isolated routing. Supporting an extensive 131K token context length, the model achieves efficient inference via multi-expert parallel collaboration and quantization, while advanced post-training techniques including SFT, DPO, and UPO ensure optimized performance across diverse applications with specialized routing and balancing losses for superior task handling.
Context size:120,000
Price:
$0.34
per million tokens
Start Chat
I

Inception

2 models available

Inception: Mercury
Tools
Mercury is the first diffusion large language model (dLLM). Applying a breakthrough discrete diffusion approach, the model runs 5-10x faster than even speed optimized models like GPT-4.1 Nano and Claude 3.5 Haiku while matching their performance. Mercury's speed enables developers to provide responsive user experiences, including with voice agents, search interfaces, and chatbots. Read more in the [blog post] (https://www.inceptionlabs.ai/blog/introducing-mercury) here.
Context size:128,000
Price:
$1.2
per million tokens
Start Chat
Inception: Mercury Coder
Tools
Mercury Coder is the first diffusion large language model (dLLM). Applying a breakthrough discrete diffusion approach, the model runs 5-10x faster than even speed optimized models like Claude 3.5 Haiku and GPT-4o Mini while matching their performance. Mercury Coder's speed means that developers can stay in the flow while coding, enjoying rapid chat-based iteration and responsive code completion suggestions. On Copilot Arena, Mercury Coder ranks 1st in speed and ties for 2nd in quality. Read more in the [blog post here](https://www.inceptionlabs.ai/blog/introducing-mercury).
Context size:128,000
Price:
$1.2
per million tokens
Start Chat
M

Meta-Llama

4 models available

Meta: Llama 4 Maverick
Tools
Llama 4 Maverick 17B Instruct (128E) is a high-capacity multimodal language model from Meta, built on a mixture-of-experts (MoE) architecture with 128 experts and 17 billion active parameters per forward pass (400B total). It supports multilingual text and image input, and produces multilingual text and code output across 12 supported languages. Optimized for vision-language tasks, Maverick is instruction-tuned for assistant-like behavior, image reasoning, and general-purpose multimodal interaction. Maverick features early fusion for native multimodality and a 1 million token context window. It was trained on a curated mixture of public, licensed, and Meta-platform data, covering ~22 trillion tokens, with a knowledge cutoff in August 2024. Released on April 5, 2025 under the Llama 4 Community License, Maverick is suited for research and commercial applications requiring advanced multimodal understanding and high model throughput.
Context size:1,048,576
Price:
$0.72
per million tokens
Start Chat
Meta: Llama 4 Scout
Tools
Llama 4 Scout 17B Instruct (16E) is a mixture-of-experts (MoE) language model developed by Meta, activating 17 billion parameters out of a total of 109B. It supports native multimodal input (text and image) and multilingual output (text and code) across 12 supported languages. Designed for assistant-style interaction and visual reasoning, Scout uses 16 experts per forward pass and features a context length of 10 million tokens, with a training corpus of ~40 trillion tokens. Built for high efficiency and local or commercial deployment, Llama 4 Scout incorporates early fusion for seamless modality integration. It is instruction-tuned for use in multilingual chat, captioning, and image understanding tasks. Released under the Llama 4 Community License, it was last trained on data up to August 2024 and launched publicly on April 5, 2025.
Context size:327,680
Price:
$0.36
per million tokens
Start Chat
Meta: Llama Guard 4 12B
Llama Guard 4 is a Llama 4 Scout-derived multimodal pretrained model, fine-tuned for content safety classification. Similar to previous versions, it can be used to classify content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM—generating text in its output that indicates whether a given prompt or response is safe or unsafe, and if unsafe, it also lists the content categories violated. Llama Guard 4 was aligned to safeguard against the standardized MLCommons hazards taxonomy and designed to support multimodal Llama 4 capabilities. Specifically, it combines features from previous Llama Guard models, providing content moderation for English and multiple supported languages, along with enhanced capabilities to handle mixed text-and-image prompts, including multiple images. Additionally, Llama Guard 4 is integrated into the Llama Moderations API, extending robust safety classification to text and images.
Context size:163,840
Price:
$0.22
per million tokens
Start Chat
Llama Guard 3 8B
Llama Guard 3 is a Llama-3.1-8B pretrained model, fine-tuned for content safety classification. Similar to previous versions, it can be used to classify content in both LLM inputs (prompt classification) and in LLM responses (response classification). It acts as an LLM – it generates text in its output that indicates whether a given prompt or response is safe or unsafe, and if unsafe, it also lists the content categories violated. Llama Guard 3 was aligned to safeguard against the MLCommons standardized hazards taxonomy and designed to support Llama 3.1 capabilities. Specifically, it provides content moderation in 8 languages, and was optimized to support safety and security for search and code interpreter tool calls.
Context size:131,072
Price:
$0.08
per million tokens
Start Chat
O

OpenRouter

2 models available

Free Router
The simplest way to get free inference. openrouter/free is a router that selects free models at random from the models available on OpenRouter. The router smartly filters for models that support features needed for your request such as image understanding, tool calling, structured outputs and more.
Context size:200,000
Price:
Free
Start Chat
Body Builder (beta)
Transform your natural language requests into structured OpenRouter API request objects. Describe what you want to accomplish with AI models, and Body Builder will construct the appropriate API calls. Example: "count to 10 using gemini and opus." This is useful for creating multi-model requests, custom model routers, or programmatic generation of API calls from human descriptions. **BETA NOTICE**: Body Builder is in beta, and currently free. Pricing and functionality may change in the future.
Context size:128,000
Price:
Free
Start Chat

Ready to get started?

Sign in to start chatting with any of the AI models above and explore our features including document analysis, memory, and powerful tools integration.

AI Models - OpenIndex Chat | OpenIndex